Функции Бесселя — различия между версиями
Korogodin (обсуждение | вклад) (Новая страница: «'''Функции Бесселя''' в математике — семейство функций, являющихся каноническими решениям...») |
Версия 22:39, 16 апреля 2011
Функции Бесселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
где — произвольное вещественное число, называемое порядком.
Модифицированные функции Бесселя
Модифици́рованные фу́нкции Бе́сселя — это функции Бесселя от чисто мнимого аргумента.
Первого рода:
Модифицированные функции Бесселя первого рода при синтезе некогерентных систем
При статистическом синтезе радиосистем в случаях, когда начальную фазу сигнала относят к неинформативным параметрам, возникает задача преобразования интеграла вида:
Рассмотрим подробнее числитель экспоненты для типичной модели сигнала
тогда
где
в которых
Далее производится красивый хак: очевидно, что , такая что:
где
С учетом проделанных преобразованием, можно записать:
По определению, модифицированная функция Бесселя первого рода нулевого порядка:
тогда с учетом того, что подынтегральная функция в полученном выражении для периодична и её период совпадает с периодом интегрирования, а значит замена аргумента на не меняет значения интеграла, получаем выражение: