Дискриминатор частоты оптимальный при малом отношении сигнал/шум — различия между версиями
Dneprov (обсуждение | вклад) (→Особенности работы) |
Dneprov (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
<math>I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = -\sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | <math>I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = -\sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | ||
<math>Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | <math>Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d))</math>,<br /> | ||
+ | <math>L=\frac{T}{{{T}_{d}}}</math> - число отсчетов за время <math>T</math> интегрирования в корреляторе, <math>T_d</math> - интервал дискретизации. | ||
== Особенности работы == | == Особенности работы == | ||
Строка 22: | Строка 23: | ||
</math> | </math> | ||
− | По этой методике весь интервал интегрирования в корреляторе разбивается на <math>N</math> равных частей длительностью <math>T_1</math>. На этих малых интервалах рассчитываются традиционные корреляционные суммы <math>I_{n_1, k}, Q_{n_1, k}</math>, а потом проводится их взвешенное суммирование. Чем больше <math>N</math>, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит <math>T = 10 | + | По этой методике весь интервал интегрирования в корреляторе разбивается на <math>N</math> равных частей длительностью <math>T_1</math>. На этих малых интервалах рассчитываются традиционные корреляционные суммы <math>I_{n_1, k}, Q_{n_1, k}</math>, а потом проводится их взвешенное суммирование. Чем больше <math>N</math>, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит <math>T = 10</math> мс, тогда целесообразно выбрать <math>T_1 = 1</math> мс и <math>N = 10</math>. |
== Дискриминационная характеристика == | == Дискриминационная характеристика == |
Версия 11:49, 2 ноября 2015
Содержание[убрать] |
Описание дискриминатора
Дискриминатор описывается выражением
,
где
,
,
,
,
- число отсчетов за время
интегрирования в корреляторе,
- интервал дискретизации.
Особенности работы
Для работы дискриминатора требуется формирование особенных квадратур . Они представляют собой обычные квадратуры, умноженные на линейно-возрастающую функцию
(индекс времени
растет - множитель растет). Аппаратно такой коррелятор не реализован. Есть предложение [1] заменить честный расчет
суммой взвешенных корреляционных сумм:
По этой методике весь интервал интегрирования в корреляторе разбивается на равных частей длительностью
. На этих малых интервалах рассчитываются традиционные корреляционные суммы
, а потом проводится их взвешенное суммирование. Чем больше
, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит
мс, тогда целесообразно выбрать
мс и
.
Дискриминационная характеристика
Сделано допущение, что .
где ,
- амплитуда сигнала
,
- количество отчетов, накапливаемых в корреляторе,
- разность истинного и опорного параметров.
Крутизна дискриминационной характеристики при нулевой расстройке по частоте: .
В модели задержка сигнала полагалась известной: .
Дискриминационная характеристика при различных временах накопления:
Флуктуационная характеристика
Получены зависимости СКО шума на выходе дискриминатора от для различных времен накопления. Теоретические кривые пунктирной линией.
Дисперсия шума эквивалентного наблюдения частоты, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке по частоте:
Интересно сравнить дисперсию шумов по входу для разных дискриминаторов. На данный момент у нас есть:
- Собственно дисперсия шума на входе рассматриваемого в этой статье дискриминатора. Обозначим ее как
:
- Дисперсия шума на входе оптимального при низком отношении сигнал/шум частотного дискриминатора (тот, который
). Формула из диссера Корогодина И. В., или, например, из этой статьи. Обозначим ее как
:
Вообще говоря, время накопления в корреляторах может быть различно. Если принять равными времена и
, получится что дискриминатору с временным сдвигом квадратур (c
) нужны будут квадратуры, накопленные на суммарном времени
и разбитые по времени пополам. Для корректности сравнения положим, что во втором дискриминаторе (у которого
) коррелятор копит на времени
. Разделим
на
. После нехитрых вычислений окажется, что
, т. е.
или для СКО:
.
Таким образом, по дисперсии шумов наблюдается не очень то большая разница между сравниваемыми дискриминаторами. На рисунке ниже приведен график зависимости СКО эквивалентных шумов представленных ЧД от отношения сигнал/шум q_{c/n0}.
convert: no images defined `/tmp/transform_43532ef815c8-1.png' @ error/convert.c/ConvertImageCommand/3044.
Листинг модели
Ниже представлен листинг модели, с которой сняты картинки.